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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.
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Methods that use distance computation between subsequences (or group of subsequences) to detect
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Anomaly Detection methods: Distance-based

Example of distance computation

B : B j  It2

(a) Euclidian Distance (b) DTW distance
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Anomaly Detection methods: an Example

v

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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Euclidean distance
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v

The matrix Profile is computed as follows:
Sy = |NN(To), NN(Typ), ... NN(Ti7i=s,¢)]

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.
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Distance-based approach that
summarize the time series into
a weighted set of subsequences
and use the distance to them as
anomaly score
Unsupervised
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[25] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021. SAND: streaming subsequence anomaly detection.

Proc. VLDB Endow. 14, 10 (June 2021), 1717-1729.
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Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.
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Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.
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Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.
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Anomaly Detection methods: an Example

0 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

P
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[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual

trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

N (6)
%
NG Each node is an ensemble of similar
subsequences.
%00 ® o
O O O
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[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories
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Univariate
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Anomaly Detection methods: an Example

v

Each node is an ensemble of similar
subsequences.

Each edge is associated to a weight
w that corresponds to the number
of times a subsequence move from
one node to another.

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

_N(1) subsequences.

N

N (©)
/ k\ (5) Each node is an ensemble of similar
'o |

Each edge is associated to a weight
w that corresponds to the number
of times a subsequence move from
one node to another.

—
v
N—

For a given subsequence T; , and its corresponding path
Py, =< NO NG NE+H) > we define the normality score as follows:
i+-1yw (NG NUGED) deg(ND) — 1
Norm(Py,) = Z ( z & )
Jj=i

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

N(6)
/ k\N(S) Each node is an ensemble of similar
° subsequences.
4 N(l) 2 (o ' G \

DADS [26] N

1

Distributed version of Series2Graph m

] €3)

\ > . )

For a given subsequence T; , and its corresponding path
Py, =< NO NG NE+H) > we define the normality score as follows:
i+-1yw (NG NUGED) deg(ND) — 1
Norm(Py,) = Z ( z & )
Jj=i

[26] Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB
Journal 30, 579-602 (2021).

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

Snippet of SED time series

0 1300 2600 3900 5200 6500

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

Snippet of SED time series

0 1300

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

2600 3900 5200 6500

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

Snippet of SED time series [14]

R — —— -

0 1300

Pattern following
an unusual path in
the graph

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

5200 6500

Pattern following
a recurrent path

\—‘ in the graph

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

- T T T T
0 1250 2500 3750 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T; f(Ti—se)

1 I |
2500 3750 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T; f(Ti—se)
Tigye T; l T
\—'L\AIIAAL\,J\[‘/\ ..»'A/ /\ ~JI
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— I f(Ti—ee)

Tiee T, i -y
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

Ti—pe T — I f(Tizg,0)
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

______ 7_15? v T, — T f(Ti—e0)
bbbl b b bbb bl e
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

______ 7_15? T, — T f(Ti—e0)
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Anomaly Detection methods: an Example

Number of cells n,

fﬁi hi
[
Ci—1 =/)-(\ JD
fT Ji
oy | |0y o,
w1 T
hi—y

*Citq

> hiyq

[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly

Detection in Time Series. (2015).

-

LSTM-AD [15]

Model that stack multiple LSTM
cell and use the output to
predict the next value

Semi-supervised

Vs
\\

~

Univariate/Multivariate

Ve

.

Point/sequence

-
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Anomaly Detection methods: an Example

|
1 I I
2500 3750 5000

O_L
=
N
(O
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[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection
in Time Series. IEEE Access 7 (2019), 1991-2005.

DeepAnT [16] (CNN)

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.

~

Semi-supervised

Vs
\\

Univariate/Multivariate

~

Ve

\.

Point/sequence

-
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
A .
Conv layer 1 MaxPooling
/ Ti_py Dense layer
: O
E_l | : l+ | | |
0 1250 2500 3750 5000

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.

DeepAnT [16] (CNN)

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
N \/
Conv layer 1 MaxPooling
/ Ti_p s Dense layer
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[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.

DeepAnT [16] (CNN)

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
A V.
Conv layer 1 MaxPooling
/ Ti_py Dense layer

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.
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DeepAnT [16] (CNN)

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.
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-
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-

based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the

time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

1 1
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.
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Anomaly Detection methods: an Example

,Anomaly score,
S = LTy, T'y) |

Reconstructed subsequence

Original subsequence

& ¢y (D)t (D=1) s (O
Ti(j’)) Tl(f 1) T'fg) Ti,t’( )Ti.t’( )Ti,l’( )
Latent space
E(T,6)p) » D(Z,6p)
1 Original subsequence ' 3 ’
f A Reconstructed
' / \ subsequence
o PR T The sl ,.5}%,\}“ \& X
6 2Io 4'0 60 1 b 2'0 4:0 60 '
Normal subsequence Anomalous subsequence

[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings

of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14).

" AutoEncoders [17] (AE) A

Neural Network composed of an
encoder (that reduce the
dimensionality) and decoder
that reconstruct the time series.
The objective is to minimize the
reconstruction error.

Semi-supervised

. J

Univariate/Multivariate

Point/sequence
N Y,
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Anomaly Detection methods: Existing
benchmark

EDBT 2023 | 31/03/2023 | 115



Anomaly Detection methods: Existing
benchmark

4 HEX/UCR [18] A

Set of 250 time series with
labels.

Details

- The labels have been
manually checked and are
reliable

- Each time series contains
only 1 labeled anomaly
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Anomaly Detection methods: Existing
benchmark

4 N [ . I
HEX/UCR [18] TimeEval [5]
Set of 250 time series with Set of 976 time series with
labels. labels.
Details Details
- The labels have been - New synthetic benchmark
manually checked and are GutenTag used to tune
reliable parameters
- Each time series contains - Only Time series with low
only 1 labeled anomaly contamination rate (< 0.1)
- Time series with at least one
\ ) LU methods above 0.8 AUC-ROC D
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Anomaly Detection methods: Existing

benchmark

-

HEX/UCR [18]

Set of 250 time series with
labels.

Details

TimeEval [5]

- The labels have been

manually checked and are
reliable

Each time series contains
only 1 labeled anomaly

Set of 976 time series with
labels.

Details

New synthetic benchmark
GutenTag used to tune
parameters

Only Time series with low
contamination rate (< 0.1)

Time series with at least one
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with
labels.

Details

J

Collected as proposed in the
literature (no filtering based
on contamination, size or
label quality)

Artificial and synthetic data
generation methods for
reliable labels

J
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Anomaly Detection methods: Existing

benchmark

Real datasets collection
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Anomaly Detection methods: Existing

benchmark

Artificial dataset generation

Synthetic dataset generation

|

S i

5.0 4 1

0 2.54 q
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.
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Unsupervised
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Methods AUC-ROC
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

- Semi-supervised methods are not
outperforming Unsupervised approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.
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Anomaly Detection methods: — T

AE - I

4

Experimental evaluation —

LOF A [

Observations on HEX/UCR [18]: CNN - F—— e

11
- Distance-based methods have a better IFOREST 1 | o

lLl

accuracy (AUC-ROC) than forecasting and _— | R
distribution-based approaches

of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.

OCSVM 1 | @ —|
l
HBOS 1 | ("] 4|
IFOREST1 - |7 O —l
l
POLY 4 | ® 4|
[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the lllusion PCA - l— (] 4|
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accuracy (AUC-ROC) than forecasting and _— | R
distribution-based approaches

of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.
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Anomaly Detection methods:
Experimental evaluation

Observations on TSB-UAD [19]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting-based
methods.

- Isolation Forest (distribution-based and not
proposed for time series) have also a strong
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an
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Anomaly Detection methods:
Experimental evaluation
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- Distance-based methods have a better
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methods.

- Isolation Forest (distribution-based and not
proposed for time series) have also a strong
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- AutoEncoder (AE) is also very accurate.
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Anomaly Detection methods:

Point-based anomaly

Experimental evaluation

CNN A

NORMA -
MP -
Observations on TSB-UAD [19]: st |
LOF -
AE A
IFOREST1 A
POLY A
IFOREST -+
PCA A
HBOS A
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series oCSVM
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods:

Point-based anomaly

Experimental evaluation

CNNR

NORMA -

MP -

Observations on TSB-UAD [19]: st

LOF A

- Forecasting methods (LSTM and CNN) are

very accurate for point anomalies AE -

- But have poor performances on sequence-
based anomalies.
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Anomaly Detection methods:

Experimental evaluation Ratio>0.1 Rati0<0.001
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PCA 1 I (] —| IFOREST - I
Observations on TSB-UAD [19]: oy { | o | pcad |
. . IFOREST1 Ii (] 4| HBOS - {
- The ratio of normal/abnormal points has a
strong impact on the methods ranking. NoRMA | | ® — POLY 1 —
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LSTM - I ("] I LSTM - I O —|
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series e | ® | oCSVM @ |
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711. H
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Anomaly Detection methods: Experimental evaluation

Observation from the results applied on specific datasets (TSB-UAD [19])

(a.1) Example from ECG dataset Y (a.2) ECG. (c.1) Example from Daphnet dataset (c.2) Daphnet
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There is no overall winner.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Evaluation measures: A general overview

Time Series
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Evaluation measures: A general overview
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:
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Evaluation measures: Threshold-based

Threshold-based Evaluation
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:
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Time Series
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:

Precision:

TP+FP
Recall (true positive rate):

TP+FN

False positive rate:
FP+TN

(1+B?)*Precision
B?*Precision+Recall

F-score:

Labels
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Time Series
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Evaluation measures: AUC-based
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Evaluation measures: AUC-based
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Evaluation measures: AUC-based

How do we set the threshold?
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Evaluation measures: AUC-based

AUC-based Evaluation Measures:
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Evaluation measures: AUC-based
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Evaluation measures: AUC-based
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Evaluation measures: AUC-based
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Evaluation measures: AUC-based

Labels
A
: ) 4’ N
AUC-based Evaluation Measures: Time Series !
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Evaluation measures: AUC-based

Labels
A

AUC-based Evaluation Measures: Time Series
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Evaluation measures: Labeling issue

Labels
A

Labeling can be an issue for time Time Series

l il
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series [22]:

Anor
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. QR
Volume under the surface: a new accuracy evaluation measure for time-series EDBT 2023 | 31/03/2023 | 152

anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

Labels
A

Labeling can be an issue for time Time Series
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[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin.
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Volume under the surface: a new accuracy evaluation measure for time-series
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Evaluation measures: Labeling issue

Labels
A

Labeling can be an issue for time
series [22]:
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- Misalignment can lead to

significant changes of accuracy
values.
Anor
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. T
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Evaluation measures: Labeling issue

Labeling can be an issue for time
series [22]:

- Misalignment can lead to
significant changes of accuracy
values.

- Thisis a real issue because of:

Different Labeling strategies
between domains and
applications

Methods that produce
misaligned anomaly scores.

P
(1) Time series S
anomaly £:£

b 3'00 '600
(2) Anomaly score

w= : Subsequence method (£)
== : Point method ;

(3) Labeling strategy:g

anomaly:

(ex1) Example
on IOPS

14600 14800 15000 15200 15400

(ex2) Example on
SensorScope

12000 12200 12400 12600 12800 13000 13200

401(ex2) Example

anomaly + borders:

on NAB

anomaly + right border::

300 600 900 1200

ot

1950 2000 2050 2100 2150 2200 2250
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Evaluation measures: Labeling
Issue

Existing solutions:

Range Precision and Recall [23]:

Ny .
- Recall;(R,P) = Li=1 Re‘;\C’l”T(RuP)

- Recall;(R_i, P) = a * ExistenceR(R;, P) + (1 — a) * OverlappingR(R_i, P)

N
p
Z'=1

o Precisiont(R,P;)
- Precisiony(R,P) = =

Np
- Precisiony (R, P;) = CardinalityFactor(P;, R) * Z?’;l w(P, P, NR;,6)

- Functions w( ), 6() are tunable functions to represent the overlap size
and position respectively.

Reward Existence or Overlapping?
Time Series Time Series

e

Anomaly Score Anomaly Score

Reward the beginning or the end?
Time Series Time Series

Anomaly Score Anomaly Score

[23] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. 2018. Precision and Recall for Time Series. In Advances in EDBT 2023 | 31/03/2023 | 156

Neural Information Processing Systems, Vol. 31.



Evaluation measures: Labeling issue

Existing solutions:
- Volume Under the Surface [22] (VUS):

- Modify the labels with buffer regions at
the beginning and at the end of an

. window ¢
\

'\
Iy

LYeoo- /N2
1

Set of
threshold T

20 1200 tin‘},ie:llgnde_;{:t 1500
- We vary the buffer size (as well as the m————
. ~ T /,/,/
threshold) and we obtain a surface — B a*
- We use the volume under the surface
(VUS) as accuracy A |
for

anomaly i

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. ElImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.

(c) R-AUC-based Accuracy measure
(ex: R-AUC-ROC, R-AUC-PR)
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(d) VUS-based Accuracy measure
(ex: VUS-ROC, VUS-PR)
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Conclusion and Open Problems

If you are interested in anomaly detection in time series...

Anomaly Detection in Time Series: A Comprehensive Evaluation
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Weni Thorsten Papenbrock
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ABSTRACT — Time series. SblOF  — LSTMAD

Detecting anomalous subsequences in time series data s an im- sbseercesoamaly i snamly

portant task in arcas ranging from manufacturing processes over

finance applications to health care monitoring. An anomaly can

indicate important events, such as production faults, delivery bot-

tlenecks, system defects, or heart flicker, and is therefore of central R

interest. Because time series are often large and exhibit complex

patterns, data scientists have developed va lized algo-

rithims for the automatic detection of such anomalous patterns. The
number and variety of anomaly detection algorithms has grown
significantly in the past and, because many of these solutions have
been developed independently and by different research communi-
ties, there is no comprehensive study that systematically evaluates
and compares the different approaches. For this reason, choosing
the best detection technique for a given anomaly detection task is
a difficult challenge.

‘This comprehensive, scientific study carefully evaluates most
state-of-the-art anomaly detection algorithms. We collected and
re-implemented 71 anomaly detection algorithms from different
domains and evaluated them on 976 time series datasets. The al-
gorithms have been selected from different algorithm families and
detection approaches to represent the entire spectrum of anomaly
detection techniques. In the paper, we provide a concise overview
of the techniques and their commonalities; we evaluate their in-
dividual strengths and weaknesses and, thereby, consider factors,
such efficiency, and robust
results should ease the algorithm selection problem and open up
new research directions.

@synthetic
ibsequence anomaly (pattern shift), a point anomaly (extremum),
and the scorings of LSTM-AD and Sub-LOF.

& & s s s

(b) Synthetic multivariate time series with a correlation anomaly
and the scoring of k-Means,

Figure 1: Example time series with anomalies and scorings.

1 ANOMALY DETECTION WILDERNESS

TSB-UAD: An End-to-End Benchmark Suite for Univariate
Time-Series Anomaly Detection

John Paparrizos Yuhao Kang Paul Boniol
‘The Ohio State University University of Chicago Université de Paris
papartizos.|@osu.cdu yuhaok@uchicago.du pauLboniol@ctuu-paris fr
Ruey S. Tsay Themis Palpanas Michael . Franklin
University of Chicago Université de Paris & IUF University of Chicago
mifranklin@uchicago.cdu
ABSTRACT that, shortly, billions of Internet-of-Things (IoT) devices will be re-

The detection of anomalies in time series has gained ample aca-
demic and industrial attention. However, no comprehensive bench-
mark exists to evaluate time-series anomaly detection methods. It
is common to use (i) proprietary or synthetic data, often biased
to support particular claims; or (ii) a limited collection of publicly
available datasets. Consequently, we often observe methods per-
forming exceptionally well in one dataset but surprisingly poorly
in another, creating an illusion of progress. To address the issues
above, we thoroughly studied over one hundred papers t0 iden-

sponsible for generating zettabytes (ZB) of time series (44, 51). This
3pid growthofcost-fective T deployments leady empoers
e dat seen applicaions and has evolutonized the e-
{ail healtheas riculture, utilities,
and utomobile ndustries (80). Among analytical tasks for IoT data
(55, 56, 65, 90), time-series anomaly detection is particularly impor-
tant for identifying abnormal phenomena (either in the behavior of
the monitored process, or measurement errors) [8, 49, 54, 82].
 Despts aver s decades of cadenac s indnstrtal tention

tify, collect, process,
in'the past decades. We summarize our ffort in TSB-UAD, 2 new
benchmark
detection methods. Overall, TSB-UAD contains 13766 time series
with labeled anomalies spanning different domains with high vari-
ability of anomaly types, ratios, and sizes. TSB-UAD includes 18
previously proposed datasets containing 1980 time series and we
contribute two collections of datasets. Specifically, we generate
958 time series using a principled methodology for transforming
126 time-series classification datasets into time series with labeled
anomalies. In addition, we present data transformations with which
we introduce new anomalies, resulting in 10828 time series with
varying complexity for anomaly detection. Finally, we evaluate 12
representative methods demonstrating that TSB-UAD is a robust

source for assessing anomaly detection methods. TSB-UAD pro-
vides a valuable, reproducible, and frequently updated resource to
establish a leaderboard of time-series anomaly detection methods.

detection (AD) (41, 81, 107], only a few ef-
forts have focused on stablshing standard means of valuating
existing solutions (notable examples 36, 60, 103, 109, 114, 118]).
Unfortunately, there is currently no consensus on using a single
benchmark for assessing the performance of time-series AD meth-
ods. As a result, we observe two standard wamrt: in the literature
‘models by using (i) synthet
dat o (1) a limied collection of pubicly avalable datasets How-
ever, both of these practices are often flawed. In the former case,
proprietary or synthetic data may have been collected or generated
biasedly to support particular claims, anomaly types, or methods.
In the latter case, only a small fraction of datasets are available,
some of which suffer from several drawbacks (e.g, trivial anomalies,
unrealistic anomaly density, or mislabeled ground truth [114])
In addition, the ambiguity and the startlingly different interpre-
tation of anomalies across applications further hinders progress. It
is not uncommon for methods to achieve high accuracy for some

Benchmarks are Flawed and are Creating the

1

SIGKDD [2], 3], ICDM [4], ICDE, SIGMOD, VLDB, etc.

largely driven by researchers anxiot

Current Time Series Anomaly Detection

lllusion of Progress

Renjie Wu and Eamonn J. Keogh

Abstract—Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the
1950s. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep
learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular
benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the
individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many
published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent
progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR
Time Series Anomaly Archive. We believe that this resource will perform a similar role as the UCR Time Series Classification
At providing the community with a benchmark that allows meaningful comparisons between approaches and a
meaningful gauge of overall progress.

Index Terms—Anomaly detection, benchmark datasets, deep leaming, time series analysis

INTRODUCTION

IME series anomaly detection has been a perennially  neural networks, and a variational auto-encoder (VAE) over-
important topic in data science, with papers dating sampling model.” This description sounds like it has many
back to the dawn of computer science [1]. However, inthe “moving parts”, and indeed, the dozen or so explicitly
last five years there has been an explosion of interest in
this topic, with at least one or two papers on the topic
appearing each year in virtually every database, data put size, softmax
mining and machine learning conference, including and batch size. All of lhh is to demonstrate “accuracy ex-
ceeding 0.90 (on a subset of the Yahoo's anomaly detection
Alarge fraction of this increase in interest seems tobe benchmark datasets).” However, as we will show, much of
S to transfer the con-  the results of this cumplex approach can be duplicated

siderable success of decp learning in other domains and  with a single line of code and a few minutes of effort.

£

ther ime sorics tacke such ag ificati Thi facado? -y !

listed parameters include: convolution filter, activation,
kermel size, srides, paddmg, LSTM input size, dense in-
nction, window size, learning rate

https://github.com/HPI-
Information-Systems/TimeEval

https://github.com/TheDatumOrg/
TSB-UAD

https://wu.renjie.im/research/ano
maly-benchmarks-are-flawed/

TS, We Ioauce TSB-UAD, a7 Open end-(6-ehd Denchmark

A review on outlier/anomaly detection in time series data

ANE BLAZQUEZ-GARCIA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research
and Technology Alliance (BRTA), Spain

USUE MORI, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University
of the Basque Country (UPV/EHU), Spain

JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence,
University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain

Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered
over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past
few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide
a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy

is presented based on the main aspects that characterize an outlier detection technique.

Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software

1 INTRODUCTION

Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations
that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series
data mining aims to extract all meaningful knowledge from this data, and several mining tasks (c.g. classification,
clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 2012; Fu 2011;
Ratanamahatana et al. 2010].

Outlier detection has become a field of interest for many researchers and practitioners and is now one of the main
tasks of time series data mining. Outlier detection has been studied in a variety of application domains such as credit
card fraud detection, intrusion detection in cybersecurity, or fault diagnosis in industry. In particular, the analysis of
outliers in time series data examines anomalous behaviors across time [Gupta et al. 2014a]. In the first study on this
topic, which was conducted by Fox [1972], two types of outliers in univariate time series were defined: type I, which

affects a single observation; and type II, which affects both a particular and the sub;

This work was first extended to four outlier types [Tsay 1988], and then to the case of multivariate time series [Tsay
etal. 2000]. Since then, many definitions of the term outlier and numerous detection methods have been proposed in the
literature. However, to this day, there is still no consensus on the terms used [Carreio et al. 2019]; for example, outlier
observations are often referred to as anomalies, discordant observations, discords, exceptions, aberrations, surprises,
peculiarities or contaminants.
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