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Anomaly Detection Methods

(a) Example of multivariate time series T from 
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i

i+2

i

i i

Why Dynamic Time Warping?

Any distance (Euclidean, Manhattan, 
…) which aligns the i-th point on one 
time series with the i-th point on the 
other will produce a poor similarity 
score.

A non-linear (elastic) alignment 
produces a more intuitive similarity 
measure, allowing similar shapes to 
match even if they are out of phase in 
the time axis.

(a) Euclidian Distance (b) DTW distance

!

"

!

"A

B

A

B

Example of distance computation



Anomaly Detection methods: an Example

Unsupervised

Univariate

sequence

Compute the distance to the 
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Many different extensions…
- For streaming time series: STAMPi [6], DAMP [8]
- For similar recurrent anomalies: left-STAMP [6]
- Anytime or ordered: STAMP [6], STOMP [7]
- For multivariate time series: mSTAMP [9]

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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SAND  [25]

Distance-based approach that summarize the time series into a 
weighted set of subsequences, and can be updated incrementally

for new arriving batches of data points
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For a given subsequence 𝑇!,ℓ and its corresponding path
𝑃45 =< 𝑁(!), 𝑁(!8,), … , 𝑁 !8ℓ >, we define the normality score as follows:
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Each node is an ensemble of similar 
subsequences.
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DADS  [26]

Distributed version of Series2Graph
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to detect if there is an anomaly or not. 



Anomaly Detection methods: an Example
LSTM-AD [15]

Semi-supervised

Univariate/Multivariate

Point/sequence

Model that stack multiple LSTM 
cell and use the output to 

predict the next value
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[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly 
Detection in Time Series. (2015).



Anomaly Detection methods: an Example
DeepAnT [16] (CNN)

Semi-supervised

Univariate/Multivariate

Point/sequence

Convolutional-based approach 
(2 convolutional layers) taking 

as input a sequence and aims to 
predict the next value.
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[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection 
in Time Series. IEEE Access 7 (2019), 1991–2005.
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[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection 
in Time Series. IEEE Access 7 (2019), 1991–2005.
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Anomaly Detection methods: an Example
AutoEncoders [17] (AE)

Semi-supervised

Univariate/Multivariate

Point/sequence

Neural Network composed of an 
encoder (that reduce the 

dimensionality) and decoder
that reconstruct the time series. 
The objective is to minimize the 

reconstruction error.

EDBT 2023 | 31/03/2023 | 114[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings 
of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14). 
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Details

- The labels have been 
manually checked and are 
reliable

- Each time series contains 
only 1 labeled anomaly
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TimeEval [5]

Set of 976 time series with 
labels.

Details

- New synthetic benchmark 
GutenTag used to tune 
parameters

- Only Time series with low 
contamination rate (< 0.1)

- Time series with at least one 
methods above 0.8 AUC-ROC
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- New synthetic benchmark 
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- Time series with at least one 
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with 
labels.

Details

- Collected as proposed in the 
literature (no filtering based 
on contamination, size or 
label quality)

- Artificial and synthetic data
generation methods for
reliable labels
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HEX/UCR [18]

Set of 250 time series with 
labels.

Details

- The labels have been
manually checked and are
reliable
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- New synthetic benchmark
GutenTag used to tune
parameters

- Only Time series with low
contamination rate (< 0.1)

- Time series with at least one
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with 
labels.

Details

- Collected as proposed in the
literature.

- No filtering based on
contamination, size or label
quality.

Real datasets collection
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HEX/UCR [18]

Set of 250 time series with 
labels.

Details

- The labels have been
manually checked and are
reliable

- Each time series contains
only 1 labeled anomaly

TimeEval [5]

Set of 976 time series with 
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Details

- New synthetic benchmark
GutenTag used to tune
parameters

- Only Time series with low
contamination rate (< 0.1)

- Time series with at least one
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with 
labels.

Details

- Collected as proposed in the
literature.

- No filtering based on
contamination, size or label
quality.

Artificial dataset generation Synthetic dataset generation
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Observations on TimeEval [5]:

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
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Observations on TimeEval [5]:

- Distance-based and Density-based methods 
have a better accuracy (AUC-ROC) than 
forecasting and reconstruction-based 
approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.



Anomaly Detection methods: 
Experimental evaluation

EDBT 2023 | 31/03/2023 | 124

Methods AUC-ROC

Se
m

i-s
up

er
vi

se
d

U
ns

up
er

vi
se

d

Observations on TimeEval [5]:

- Distance-based and Density-based methods 
have a better accuracy (AUC-ROC) than 
forecasting and reconstruction-based 
approaches

- Semi-supervised methods are not
outperforming Unsupervised approaches 

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
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Observations on HEX/UCR [18]:

- Distance-based methods have a better 
accuracy (AUC-ROC) than forecasting and 
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion 
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.
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Observations on TSB-UAD [19]:

- Distance-based methods have a better 
accuracy (AUC-ROC) than forecasting-based 
methods. 

- Isolation Forest (distribution-based and not 
proposed for time series) have also a strong 
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an 
end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Observations on TSB-UAD [19]:

Point-based anomaly sequence-based anomaly
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Observations on TSB-UAD [19]:

- Forecasting methods (LSTM and CNN) are 
very accurate for point anomalies

- But have poor performances on sequence-
based anomalies.

Point-based anomaly sequence-based anomaly

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael 
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Observations on TSB-UAD [19]:

- The ratio of normal/abnormal points has a 
strong impact on the methods ranking.

Ratio>0.1 Ratio<0.001

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael 
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Observation from the results applied on specific datasets (TSB-UAD [19])

There is no overall winner.
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(c.2) Daphnet best detector: HBOS

(d.2) YAHOO best detector: CNN

(a.1) Example from ECG dataset

(b.1) Example from MGAB dataset

(c.1) Example from Daphnet dataset

(d.1) Example from YAHOO dataset

AU
C-
PR

AU
C-
PR

AU
C-
PR

AU
C-
PR

(a.1) Example from ECG dataset (b.1) Example from MGAB dataset (c.1) Example from Daphnet dataset (d.1) Example from YAHOO dataset

(a.2) ECG best detector: NormA

(b.2) MGAB best detector: LOF

(c.2) Daphnet best detector: HBOS

(d.2) YAHOO best detector: CNN

(a.1) Example from ECG dataset

(b.1) Example from MGAB dataset

(c.1) Example from Daphnet dataset

(d.1) Example from YAHOO dataset

AU
C-
PR

AU
C-
PR

AU
C-
PR

AU
C-
PR

(a.1) Example from ECG dataset (b.1) Example from MGAB dataset (c.1) Example from Daphnet dataset (d.1) Example from YAHOO dataset

(a.2) ECG best detector: NormA

(b.2) MGAB best detector: LOF

(c.2) Daphnet best detector: HBOS

(d.2) YAHOO best detector: CNN

(a.1) Example from ECG dataset

(b.1) Example from MGAB dataset

(c.1) Example from Daphnet dataset

(d.1) Example from YAHOO dataset

AU
C-
PR

AU
C-
PR

AU
C-
PR

AU
C-
PR

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Evaluation Measures

(a) Example of multivariate time series T from 
the vibration class !ℳ" .

(b) "#$%#ℳ" ! : Dimension-wise Class Activation 
Map of T for the vibration class !ℳ" .
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Threshold-based Evaluation 
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- Precision: /7
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- Recall (true positive rate): /7
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AUC-ROC [20]

[20] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861–874. 
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AUC-based Evaluation Measures:

Precision

Recall

AUC-PR [21]

[21] Jesse Davis and Mark Goadrich. 2006. The Relationship between Precision-Recall and ROC Curves. In Proceedings of the 23rd 
International Conference on Machine Learning (ICML ’06).
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Labeling can be an issue for time 
series [22]:

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. Elmore, and M. J. Franklin. 
Volume under the surface: a new accuracy evaluation measure for time-series 
anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774–2787.
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Labeling can be an issue for time 
series [22]:

- Misalignment can lead to 
significant changes of accuracy 
values.

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. Elmore, and M. J. Franklin. 
Volume under the surface: a new accuracy evaluation measure for time-series 
anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774–2787.
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Labeling can be an issue for time 
series [22]:

- Misalignment can lead to 
significant changes of accuracy 
values.

- This is a real issue because of:

- Different Labeling strategies
between domains and 
applications

- Methods that produce 
misaligned anomaly scores.
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Evaluation measures: Labeling 
issue
Existing solutions:

- Range Precision and Recall [23]:

- 𝑅𝑒𝑐𝑎𝑙𝑙/ 𝑅, 𝑃 =
∑%&"
'( @=>A,,) @%,7

9(
- 𝑅𝑒𝑐𝑎𝑙𝑙$ 𝑅_𝑖, 𝑃 = 𝛼 ∗ 𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑅 𝑅! , 𝑃 + 1 − 𝛼 ∗ 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔𝑅(𝑅_𝑖, 𝑃)

- 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛/ 𝑅, 𝑃 =
∑%&"
'* 7<=>'?'.-) @,7%

9*

- 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛/ 𝑅, 𝑃' = 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 𝑃' , 𝑅 ∗ ∑*C"
9( 𝑤 𝑃' , 𝑃' ∩ 𝑅* , 𝛿

- Functions 𝑤 , 𝛿 are tunable functions to represent the overlap size 
and position respectively.

Anomaly Score

Time Series

[23] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. 2018. Precision and Recall for Time Series. In Advances in 
Neural Information Processing Systems, Vol. 31. 

Anomaly Score

Time Series
Reward Existence or Overlapping?

Anomaly Score

Time Series

Anomaly Score

Time Series
Reward the beginning or the end?
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Evaluation measures: Labeling issue

Existing solutions:

- Volume Under the Surface [22] (VUS):

- Modify the labels with buffer regions at 
the beginning and at the end of an 
anomaly

- We vary the buffer size (as well as the 
threshold) and we obtain a surface

- We use the volume under the surface 
(VUS) as accuracy

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. Elmore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation 
measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774–2787.
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If you are interested in anomaly detection in time series… 

S. Schmidl et al. PVLDB (2022)
[5]

J. Paparrizos et al. PVLDB (2022)
[19]

R. Wu et al. TKDE (2021)
[18]

A. Blazquez-Garcia et al. ACM 
Computing Survey (2021) [24]

https://github.com/TheDatumOrg/
TSB-UAD

https://github.com/HPI-
Information-Systems/TimeEval

https://wu.renjie.im/research/ano
maly-benchmarks-are-flawed/
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Conclusion and Open Problems
Model selection for anomaly detection

(a.1) Example from ECG dataset (b.1) Example from MGAB dataset (c.1) Example from Daphnet dataset (d.1) Example from YAHOO dataset

(a.2) ECG best detector: NormA

(b.2) MGAB best detector: LOF

(c.2) Daphnet best detector: HBOS

(d.2) YAHOO best detector: CNN

(a.1) Example from ECG dataset

(b.1) Example from MGAB dataset

(c.1) Example from Daphnet dataset

(d.1) Example from YAHOO dataset
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Methods ranking changes 
significantly between datasets [19]
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Results over TSB-UAD

EDBT 2023 | 31/03/2023 | 164



Conclusion and Open Problems
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(a.1) Example from ECG dataset (b.1) Example from MGAB dataset (c.1) Example from Daphnet dataset (d.1) Example from YAHOO dataset

(a.2) ECG best detector: NormA

(b.2) MGAB best detector: LOF
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(d.2) YAHOO best detector: CNN
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Methods ranking changes 
significantly between datasets [19]

Can Ensembling methods solve the 
problem?
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Can automatic model selection solve 
the problem?
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