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1. Introduction
The Anthropocene era is marked by human activities releasing contaminants in the environment1. Among

these contaminants, nanoparticles (NPs) have increasingly drawn the attention of scientists2,3. Due to their very
high specific surface area and small size (nm to µm), these NPs are highly reactive particles4. The field of environ-
mental nanogeochemistry has recently emerged to study their biogeochemical fate, behavior, and impact within
the critical zone5. This field particularly focuses on assessing the flow of these NPs, determining their origin
(natural vs. anthropogenic), understanding their role (vector of trace metals), and their transformation (homo- vs.
hetero-aggregation, dissolution) within environmental ecosystems6.

To that end, most studies employ inductively coupled plasma mass-spectrometry (ICP-MS) and derivated
technologies such as single-particle ICP-MS to detect and characterize NPs within samples. spICP-MS has proven
promising in our previous studies on the fate of NPs in aquatic systems, where we demonstrated that land use
and hydrological variability affect the biogeochemical properties of rivers, which drive the flows and stability of
NPs7–10. However, the source of NPs in these ecosystems remains unclear due to the lack of multi-element monitor-
ing. A new generation of time-of-flight mass spectrometer used in single-particle mode (spICP-ToF-MS) has since
proved highly effective, offering more complete information on NPs11–13. This cutting-edge instrument, available
exclusively at IPGP in France since 2022, enables real-time detection and elemental characterization of individ-
ual NPs, providing unparalleled insights into their composition and size distribution14,15. In practice, continuously
introducing an environmental sample (usually aqueous) produces element-specific time series consisting of a back-
ground noise and peaks corresponding to individual NPs (Figure 1). The main challenge is therefore the accurate
detection of NPs events within the time series, distinguishing them from the background noise, followed by their
accurate identification thanks to their elemental composition. Current methods use either threshold-based peak de-
tection algorithms, often not robust to variation of peak prominence, shape, and background noise level over time
and element16, or advanced background noise modeling, which require a priori knowledge of noise distribution17.
Coincident peaks, where multiple NPs events occur in close succession, and saturated peaks, where the signal
produced by relatively large NPs exceeds the detector’s capacity, are not yet adequately addressed (Figure 1). For
identification of NPs families, hierarchical clustering is so far preferred by environmental nanogeochemists13–15,
but it requires manual adjustment of several meta-parameters, such as the distance threshold for merging.

Advances in machine and deep learning algorithms (hereafter refereed to as artificial intelligence, or AI)
have improved detection capabilities18, revealed hidden relationships19, and classified NPs by their properties20.
However, their application to spICP-ToF-MS time-series remains unexplored. This project aims to fill this gap
by building a data processing and analysis pipeline to offer the environmental nanogeochemistry community
with a tailored and standardized methodology to effectively detect, characterize and subsequently identify NPs
in a timely manner. To do so, we must tackle the following challenges: (1) accurately detect NPs peaks within
the time series despite variations, (2) identify the NPs families with minimum prior knowledge based on their
elemental composition to understand their origin, role and transformation.

Figure 1: a. Part (20 seconds) of an spICP-ToF-MS measurement for a 100-fold diluted surface water sample containing NPs. b. Zoom on a single NP-
generated peak of a. with spikes in Mg, Si and Fe. c. Zoom on a single NP-generated peak of a. with spikes in Fe, Mn, Si, Ni and Mg.
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2. Objectives
The project main objective is to develop, validate and provide an advanced AI-based methodology to

enhance the accuracy and precision of NPs peak detection and clustering in spICP-ToF-MS time series. We will:
A. Conduct a systematic evaluation and comparison of various AI models to determine the most effective ap-

proach(es) for NPs peak detection within the time series,
B. Design and implement advanced methods for the classification and handling of overlapping and saturated

peaks, ensuring accurate representation and analysis of complex peak structures,
C. Develop robust clustering algorithms to classify and analyze peaks based on their elemental composition,

facilitating the understanding of NPs characteristics and their environmental implications,
D. Create an integrated platform that encompasses tools for spICP-ToF-MS time series visualization, data pro-

cessing, and comprehensive analysis, providing a standardized and user-friendly interface for researchers.

3. Method and Timetable

Figure 2: Workflow of the proposed method.

The use of simulated data, with known peak number, position, and characteristic and various noise levels, will
provide a valuable resource for training and validating ML/DL models. This will facilitate the development and
testing of our Nanonet pipeline before applying it to real-world data (Figure 2).

• A1. Generate simulated spICP-ToF-MS time series with varying (known) attributes for training and testing.
• A2. Develop and test a basic threshold-based algorithm for robustly detecting the largest peaks.
• A3. Implement a ML/DL model for peak recognition on A1 data; recognize previously-undetected peaks.
• A4. (if A3 weak) Train a deep-learning model (U-net-like) to denoise A1 data. Combine with A2 model.
• B1. Develop algorithms to classify detected peaks into isolated, overlapping, and saturated categories.
• B2. Implement unsupervised clustering algorithms to identify NP families with minimal prior knowledge.
• C1. Collect and preprocess real spICP-ToF-MS data, obtain successful detection and classification results.
• C2. (if C1 weak) Fine-tune the trained models on real data and/or retrain the models with A1 data.
• D1. Dissiminate the developed tools and methodologies to the community through a paper and presentations.
• D2. Implement an integrated platform for data analysis and visualization, available on a public repository.
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